Peaks Extraction#

EMD_eeg(data, method='EMD', graph=False, extrema_detection='simple', nIMFs=5)[source]#

The Empirical Mode Decomposition is a data-adaptive multiresolution technique to decompose a signal into physically meaningful components, the Intrinsic Mode Functions (IMFs). It works like a dyadic filter bank. Hence, a log2 structure characterizes the relation between successive IMFs.

Parameters
  • data (array (numDataPoints,)) – Single time series.

  • method (str, default=’EMD’) – Type of Empirical Mode Decomposition. The available types are:

    • ‘EMD’

    • ‘EEMD’

    • ‘CEEMDAN’

    • ‘EMD_fast’

    • ‘EEMD_fast’

  • graph (bool, default=False) – Defines if graph is created.

  • extrema_detection (str, default=’simple’) –

    • ‘simple’

    • ‘parabol’

  • nIMFs (int, default=5) – Number of IMFs to plot when ‘graph’ = True.

Returns

eIMFs (array (nIMFS, numDataPoints)) – Returns an array of n Intrinsic Mode Functions by the initial number of data points.

Examples

>>> data = np.load('data_examples/EEG_pareidolia/parei_data_1000ts.npy')[0]
>>> IMFs = EMD_eeg(data, method="EMD", graph=False, extrema_detection="simple", nIMFs=5)
>>> print('DATA', data.shape, 'IMFs', IMFs.shape)
DATA (9501,) IMFs (11, 9501)

References

1. Huang, Norden E., et al. “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis.” Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 454.1971 (1998): 903-995.

SSA_EEG(data, n_components=3, graph=False, window_size=20)[source]#

Applies Singular Spectrum Analysis (SSA) to the input signal to extract its main frequency components.

Parameters
  • data (numpy.ndarray) – The input signal as a 1D numpy array.

  • n_components (int, default=3) – The number of components to extract from the signal.

  • graph (bool, default=False) – Whether to plot the original signal and the extracted components.

  • window_size (int, default=20) – The size of the sliding window used in SSA.

Returns

numpy.ndarray – The extracted components as a 2D numpy array, where each row corresponds to a component.

Examples

>>> data = np.load('data_examples/EEG_pareidolia/parei_data_1000ts.npy')[0]
>>> components = SSA_EEG(data[1000:2000], n_components=5, graph=True, window_size=50)
>>> print(components.shape)
(5, 1000)
extract_welch_peaks(data, sf, precision=0.5, min_freq=1, max_freq=None, FREQ_BANDS=None, average='median', noverlap=None, nperseg=None, nfft=None, find_peaks_method='maxima', width=2, rel_height=0.7, prominence=1, out_type='all', extended_returns=True, smooth=1)[source]#

Extract frequency peaks using Welch’s method for periodograms computation.

Parameters
  • data (array (numDataPoints,)) – Single time series.

  • sf (int) – Sampling frequency.

  • precision (float, default=0.5) – Size of a frequency bin in Hertz.

  • min_freq (float, default=1.0) – Minimum frequency to consider when out_type=’all’.

  • max_freq (float) – Maximum frequency to consider when out_type=’all’.

  • FREQ_BANDS (List of lists) – Each sublist contains the minimum and maximum values for each frequency band.

  • average (str, default=’median’) – Method for averaging periodograms.

    • ‘mean’

    • ‘median’

  • nperseg (int, default=None) – Length of each segment. If None, nperseg = nfft/smooth

  • nfft (int, default=None) – Length of the FFT used, if a zero padded FFT is desired. If None, nfft = sf/(1/precision)

  • noverlap (int, default=None) – Number of points to overlap between segments. If None, noverlap = nperseg // 2.

  • find_peaks_method (str, default=’maxima’) –

    • ‘maxima’

    • ‘wavelet’

  • width (int, default=2) – Required width of peaks in samples.

  • rel_height (float, default=0.7) – Chooses the relative height at which the peak width is measured as a percentage of its prominence. 1.0 calculates the width of the peak at its lowest contour line while 0.5 evaluates at half the prominence height.

  • prominence (float, default=1) – Required prominence of peaks.

  • out_type (str, default=’all’) – Defines how many peaks are outputed. The options are:

    • ‘single’

    • ‘bands’

    • ‘all’

  • extended_returns (bool, default=True) – Defines if psd and frequency bins values are output along the peaks and amplitudes.

  • smooth (int, default=1) – Number used to divide nfft to derive nperseg. Higher values will provide smoother periodograms.

Returns

  • peak (List(float)) – Frequency value.

  • amp (List(float)) – Amplitude value.

  • freqs (Array) – Frequency bins

  • psd (Array) – Power spectrum density of each frequency bin

Examples

>>> data = np.load('data_examples/EEG_pareidolia/parei_data_1000ts.npy')[0]
>>> FREQ_BANDS = [[1, 3], [3, 8], [8, 13], [13, 20], [20, 30], [30, 50]]
>>> peaks, amps = extract_welch_peaks(
>>>                                   data,
>>>                                   1200,
>>>                                   FREQ_BANDS=FREQ_BANDS,
>>>                                   precision=0.5,
>>>                                   out_type="bands",
>>>                                   extended_returns=False,
>>>                                   )
>>> peaks
[1.5, 5.5, 9.0, 15.0, 22.5, 32.5]
compute_FOOOF(data, sf, precision=0.5, max_freq=80, noverlap=None, nperseg=None, nfft=None, n_peaks=5, extended_returns=False, graph=False)[source]#

FOOOF model the power spectrum as a combination of two distinct functional processes: - An aperiodic component, reflecting 1/f like characteristics - A variable number of periodic components (putative oscillations),

as peaks rising above the aperiodic component.

Parameters
  • data (array (numDataPoints,)) – Single time series.

  • sf (int) – Sampling frequency.

  • precision (float, default=0.5) – Size of a frequency bin in Hertz before sending to FOOOF.

  • max_freq (float, default=80) – Maximum frequency to consider as a peak.

  • noverlap (int, default=None) – Number of points to overlap between segments. If None, noverlap = nperseg // 2.

  • nperseg (int) – Length of each segment.

  • nfft (int, default=None) – Length of the FFT used, if a zero padded FFT is desired. If None, the FFT length is nperseg.

  • n_peaks (int, default=5) – Maximum number of peaks. If FOOOF finds higher number of peaks, the peaks with highest amplitude will be retained.

  • extended_returns (bool, default=False) – Defines if psd and frequency bins values are output along the peaks and amplitudes.

  • graph (bool, default=False) – Defines if a graph is generated.

Returns

  • peaks (List(float)) – Frequency values.

  • amps (List(float)) – Amplitude values.

  • freqs (Array) – Frequency bins

  • psd (Array) – Power spectrum density of each frequency bin

Examples

>>> data = np.load('data_examples/EEG_pareidolia/parei_data_1000ts.npy')[0]
>>> peaks, amps = compute_FOOOF(data, sf=1200, max_freq=50, n_peaks=3)
>>> peaks
[7.24, 14.71, 5.19]

References

Donoghue T, Haller M, Peterson EJ, Varma P, Sebastian P, Gao R, Noto T, Lara AH, Wallis JD, Knight RT, Shestyuk A, Voytek B (2020). Parameterizing neural power spectra into periodic and aperiodic components. Nature Neuroscience, 23, 1655-1665. DOI: 10.1038/s41593-020-00744-x

HilbertHuang1D(data, sf, graph=False, nIMFs=5, min_freq=1, max_freq=80, precision=0.1, bin_spread='log', smooth_sigma=None, keep_first_IMF=False)[source]#

The Hilbert-Huang transform provides a description of how the energy or power within a signal is distributed across frequency. The distributions are based on the instantaneous frequency and amplitude of a signal.

Parameters
  • data (array (numDataPoints,)) – Single time series.

  • sf (int) – Sampling frequency.

  • graph (bool, default=False) – Defines if a graph is generated.

  • nIMFs (int, default=5) – Number of intrinsic mode functions (IMFs) to keep when Empirical Mode Decomposition (EMD) is computed.

  • min_freq (float, default=1) – Minimum frequency to consider.

  • max_freq (float, default=80) – Maximum frequency to consider.

  • precision (float, default=0.1) – Value in Hertz corresponding to the minimal step between two frequency bins.

  • bin_spread (str, default=’log’) –

    • ‘linear’

    • ‘log’

  • smooth_sigma (float, default=None) – Sigma value for gaussian smoothing.

Returns

  • IF (array (numDataPoints,nIMFs)) – instantaneous frequencies associated with each IMF.

  • peaks (List(float)) – Frequency values.

  • amps (List(float)) – Amplitude values.

  • spec (array (nIMFs, nbins)) – Power associated with all bins for each IMF

  • bins (array (nIMFs, nbins)) – Frequency bins for each IMF

Examples

>>> data = np.load('data_examples/EEG_pareidolia/parei_data_1000ts.npy')[0]
>>> _, peaks, amps, _, _ = HilbertHuang1D(data, sf=1200, nIMFs=5)
>>> peaks
[2.24, 8.08, 11.97, 19.61, 64.06]
cepstrum(signal, sf, plot_cepstrum=False, min_freq=1.5, max_freq=80)[source]#

The cepstrum is the result of computing the inverse Fourier transform (IFT) of the logarithm of the estimated signal spectrum. The method is a tool for investigating periodic structures in frequency spectra.

Parameters
  • signal (array (numDataPoints,)) – Single time series.

  • sf (int) – Sampling frequency.

  • plot_cepstrum (bool, default=False) – Determines wether a plot is generated.

  • min_freq (float, default=1.5) – Minimum frequency to consider.

  • max_freq (float, default=80) – Maximum frequency to consider.

Returns

  • cepstrum (array (nbins,)) – Power of the cepstrum for each quefrency.

  • quefrency_vector (array(nbins,)) – Values of each quefrency bins.

cepstral_peaks(cepstrum, quefrency_vector, max_time, min_time)[source]#

This function extract cepstral peaks based on the :func:’biotuner.peaks_extraction.cepstrum’ function.

Parameters
  • cepstrum (array) – Values of cepstrum power across all quefrency bins.

  • quefrency_vector (array) – Values of all the quefrency bins.

  • max_time (float) – Maximum value of the quefrency to keep in seconds.

  • min_time (float) – Minimum value of the quefrency to keep in seconds.

Returns

  • peaks (List(float)) – Quefrency values.

  • amps (List(float)) – Amplitude values.

Examples

>>> data = np.load('data_examples/EEG_pareidolia/parei_data_1000ts.npy')[0]
>>> cepst, quef = cepstrum(data, 1000, plot_cepstrum=False, min_freq=1, max_freq=50)
>>> peaks, amps = cepstral_peaks(cepst, quef, 1, 0.01)
>>> print('PEAKS', [np.round(x) for x in peaks[0:3]])
>>> print('AMPS', [np.round(x) for x in amps[0:3]])
PEAKS [24.0, 16.0, 11.0]
AMPS [244.0, 151.0, 101.0]
pac_frequencies(ts, sf, method='duprelatour', n_values=10, drive_precision=0.05, max_drive_freq=6, min_drive_freq=3, sig_precision=1, max_sig_freq=50, min_sig_freq=8, low_fq_width=0.5, high_fq_width=1, plot=False)[source]#
A function to compute the comodulogram for phase-amplitude coupling

and extract the pairs of peaks with maximum coupling value.

Parameters
  • ts (array (numDataPoints,)) – Single time series.

  • sf (int) – Sampling frequency.

  • method (str) –

    • ‘ozkurt’

    • ‘canolty’

    • ‘tort’

    • ‘penny’

    • ‘vanwijk’

    • ‘duprelatour’

    • ‘colgin’

    • ‘sigl’

    • ‘bispectrum’

  • n_values (int, default=10) – Number of pairs of drive and modulated frequencies to keep.

  • drive_precision (float, default=0.05) – Value (hertz) of one frequency bin of the phase signal.

  • max_drive_freq (float, default=6) – Minimum value (hertz) of the phase signal.

  • min_drive_freq (float, default=3) – Maximum value (hertz) of the phase signal.

  • sig_precision (float, default=1) – Value (hertz) of one frequency bin of the amplitude signal.

  • max_sig_freq (float, default=50) – Maximum value (hertz) of the amplitude signal.

  • min_sig_freq (float, default=8) – Minimum value (hertz) of the amplitude signal.

  • low_fq_width (float, default=0.5) – Bandwidth of the band-pass filter (phase signal).

  • high_fq_width (float, default=1) – Bandwidth of the band-pass filter (amplitude signal).

  • plot (bool, default=False) – Determines if a plot of the comodulogram is created.

Returns

  • pac_freqs (List of lists) – Each sublist correspond to pairs of frequencies for the phase and amplitude signals with maximal coupling value.

  • pac_coupling (List) – Coupling values associated with each pairs of phase and amplitude frequencies.

Examples

>>> data = np.load('data_examples/EEG_pareidolia/parei_data_1000ts.npy')[0]
>>> pac_frequencies(
>>>                 data,
>>>                 1200,
>>>                 method="canolty",
>>>                 n_values=5,
>>>                 drive_precision=0.1,
>>>                 max_drive_freq=6,
>>>                 min_drive_freq=3,
>>>                 sig_precision=1,
>>>                 max_sig_freq=50,
>>>                 min_sig_freq=10,
>>>                 low_fq_width=0.5,
>>>                 high_fq_width=1,
>>>                 plot=True,
>>>                 )
([[3.0, 10.0], [3.0, 11.0], [3.8, 15.0], [4.0, 11.0], [3.2, 11.0]],
[3.544482291850382e-08,
3.44758700485373e-08,
4.125714430185903e-08,
3.780184228154704e-08,
3.3232328382531826e-08])
polycoherence(data, *args, dim=2, **kwargs)[source]#

Calculate the polycoherence between frequencies and their sum frequency.

The polycoherence is defined as a function of two frequencies: |<prod(spec(fi)) * conj(spec(sum(fi)))>| ** n0 / <|prod(spec(fi))|> ** n1 * <|spec(sum(fi))|> ** n2 where i is from 1 to N. For N=2, it is the bicoherence, and for N>2, it is the polycoherence.

Parameters
  • data (array_like) – 1D data array.

  • fs (float) – Sampling rate.

  • ofreqs (float) – Fixed frequencies.

  • dim ({‘sum’, 1, 2, 0}, optional) – Dimension of the polycoherence calculation:

    • ‘sum’: 1D polycoherence with fixed frequency sum. The first argument after fs is the frequency sum. Other fixed frequencies possible.

    • 1: 1D polycoherence as a function of f1, at least one fixed frequency (ofreq) is expected.

    • 2: 2D polycoherence as a function of f1 and f2. ofreqs are additional fixed frequencies.

    • 0: Polycoherence for fixed frequencies.

  • norm ({2, 0, tuple}, optional) – Normalization scheme:

    • 2: Return polycoherence, n0 = n1 = n2 = 2 (default).

    • 0: Return polyspectrum, <prod(spec(fi)) * conj(spec(sum(fi)))>.

    • tuple(n1, n2): General case with n0=2.

  • synthetic (list, optional) – Used for synthetic signal for some frequencies. List of 3-item tuples (freq, amplitude, phase). The freq must coincide with the first fixed frequencies (ofreq, except for dim=’sum’).

  • flim1, flim2 (tuple, optional) – Frequency limits for 2D case.

  • **kwargs – Additional keyword arguments to pass to scipy.signal.spectrogram. Important parameters are nperseg, noverlap, and nfft.

Returns

  • polycoherence (ndarray) – The polycoherence or polyspectrum.

  • freqs (ndarray) – Frequency array.

  • spectrum (ndarray) – The power spectrum of the signal.

Notes

< > denotes averaging and | | denotes absolute value.

References

FROM: https://github.com/trichter/polycoherence.

polyspectrum_frequencies(data, sf, precision, n_values=10, nperseg=None, noverlap=None, method='bicoherence', flim1=(2, 50), flim2=(2, 50), graph=False)[source]#

Calculate the frequencies and amplitudes of the top n polyspectral components using the bispectrum or bicoherence method.

Parameters
  • data (array-like) – The input signal.

  • sf (float) – The sampling frequency of the input signal.

  • precision (float) – The desired frequency precision of the output.

  • n_values (int, default=10) – The number of top polyspectral components to return. Default is 10.

  • nperseg (int, default=None) – The length of each segment used in the FFT calculation. If not specified, defaults to sf.

  • noverlap (int, default=None) – The number of samples to overlap between adjacent segments. If not specified, When default is None, noverlap = sf // 10.

  • method (str, default=’bicoherence’) – The method to use for calculating the polyspectrum. Can be either:

    • “bispectrum”

    • “bicoherence”

  • flim1 (tuple of float, default=(2, 50)) – The frequency limits for the first frequency axis.

  • flim2 (tuple of float, default=(2, 50)) – The frequency limits for the second frequency axis.

  • graph (bool, default=False) – Whether to plot the polyspectrum using matplotlib.

Returns

tuple of list of float – A tuple containing the frequencies and amplitudes of the top n polyspectral components, respectively.

Examples

>>> data = np.load('data_examples/EEG_pareidolia/parei_data_1000ts.npy')[0]
>>> polyspectrum_frequencies(data, sf=1200, precision=0.1, n_values=5, method="bicoherence",
>>>                      flim1=(15, 30), flim2=(2, 15), graph=True,
>>>                     )
([[23.25, 4.916666666666666],
[23.333333333333332, 4.916666666666666],
[23.166666666666664, 4.916666666666666],
[23.416666666666664, 4.916666666666666],
[27.25, 4.75]],
[[0.8518411], [0.84810454], [0.8344524], [0.83267957], [0.8235908]])
harmonic_recurrence(peaks, amps, min_freq=1, max_freq=30, min_harms=2, harm_limit=128)[source]#

Identify spectral peaks that have the highest recurrence in the spectrum based on their harmonic series.

Parameters
  • peaks (list of floats) – List of all spectral peaks.

  • amps (list of floats) – List of amplitudes of the spectral peaks.

  • min_freq (float, default=1) – Minimum frequency to consider.

  • max_freq (float, default=30) – Maximum frequency to consider.

  • min_harms (int, default=2) – Minimum number of harmonic recurrence to keep a peak.

  • harm_limit (int, default=128) – Highest harmonic to consider.

Returns

tuple of arrays – Returns a tuple of arrays containing:

  • max_n: Number of harmonic recurrences for each selected peak.

  • max_peaks: Frequencies of each selected peak.

  • max_amps: Amplitudes of each selected peak.

  • harmonics: List of harmonic ratios of each selected peak.

  • harmonic_peaks: Frequencies of peaks that share harmonic ratios with each selected peak.

  • harm_peaks_fit: List containing detailed information about each selected peak.

Examples

>>> data = np.load('data_examples/EEG_pareidolia/parei_data_1000ts.npy')[0]
>>> peaks, amps, freqs, psd = extract_welch_peaks(
>>>                             data,
>>>                             1000,
>>>                             precision=1,
>>>                             max_freq=150,
>>>                             extended_returns=True,
>>>                             out_type="all",
>>>                             min_freq=1)
>>> (max_n, peaks_temp,
>>>  amps_temp,harms,
>>>  harm_peaks,
>>>  harm_peaks_fit) = harmonic_recurrence(peaks, amps, min_freq=1,
>>>                                        max_freq=50, min_harms=2,
>>>                                        harm_limit=128)
>>> peaks_temp
array([ 2.,  6., 27., 44.])
endogenous_intermodulations(peaks, amps, order=3, min_IMs=2, max_freq=100)[source]#

Computes the intermodulation components (IMCs) for each pair of peaks and compares the IMCs with peak values. If a pair of peaks has a number of IMCs equal to or greater than the min_IMs parameter, these peaks and the associated IMCs are stored in the IMCs_all dictionary.

Parameters
  • peaks (array_like) – An array of peak frequencies.

  • amps (array_like) – An array of amplitudes corresponding to the peak frequencies.

  • order (int, default=3) – The maximum order of intermodulation to consider.

  • min_IMs (int, default=2) – The minimum number of IMCs required for a pair of peaks to be stored in the IMCs_all dictionary.

  • max_freq (float, default=100) – The maximum frequency to consider when computing IMCs.

Returns

  • EIMs (list) – A list of the endogenous intermodulation components (EIMs) for each peak.

  • IMCs_all (dict) – A dictionary containing information about all the pairs of peaks and their associated IMCs that satisfy the min_IMs threshold. The dictionary has the following keys:

    • IMs: a list of lists, where each list contains the IMCs associated with a pair of peaks.

    • peaks: a list of lists, where each list contains the frequencies of the two peaks.

    • n_IMs: a list of integers, where each integer represents the number of IMCs associated with a pair of peaks.

    • amps: a list of lists, where each list contains the amplitudes of the two peaks.

  • n_IM_peaks (int) – The total number of pairs of peaks and their associated IMCs that satisfy the min_IMs threshold.

Examples

>>> peaks = [5, 9, 13, 21]
>>> amps = [0.6, 0.5, 0.4, 0.3]
>>> EIMs, IMCs_all, n_IM_peaks = endogenous_intermodulations(peaks, amps, order=3, min_IMs=2, max_freq=50)
>>> IMCs_all
{'IMs': [[5, 21]], 'peaks': [[9, 13]], 'n_IMs': [2], 'amps': [[0.5, 0.4]]}
compute_sidebands(carrier, modulator, order=2)[source]#

Computes the frequency values of the sidebands resulting from the interaction of a carrier signal and a modulating signal.

Parameters
  • carrier (float) – The frequency value of the carrier signal.

  • modulator (float) – The frequency value of the modulating signal.

  • order (int, default=2) – The order of the highest sideband to compute.

Returns

numpy.ndarray – A sorted 1D array of frequency values for the sidebands.

Examples

>>> compute_sidebands(1000, 100, 3)
array([700., 800., 900., 1100., 1200., 1300.])
>>> compute_sidebands(500, 75, 2)
array([350., 425., 575., 650.])